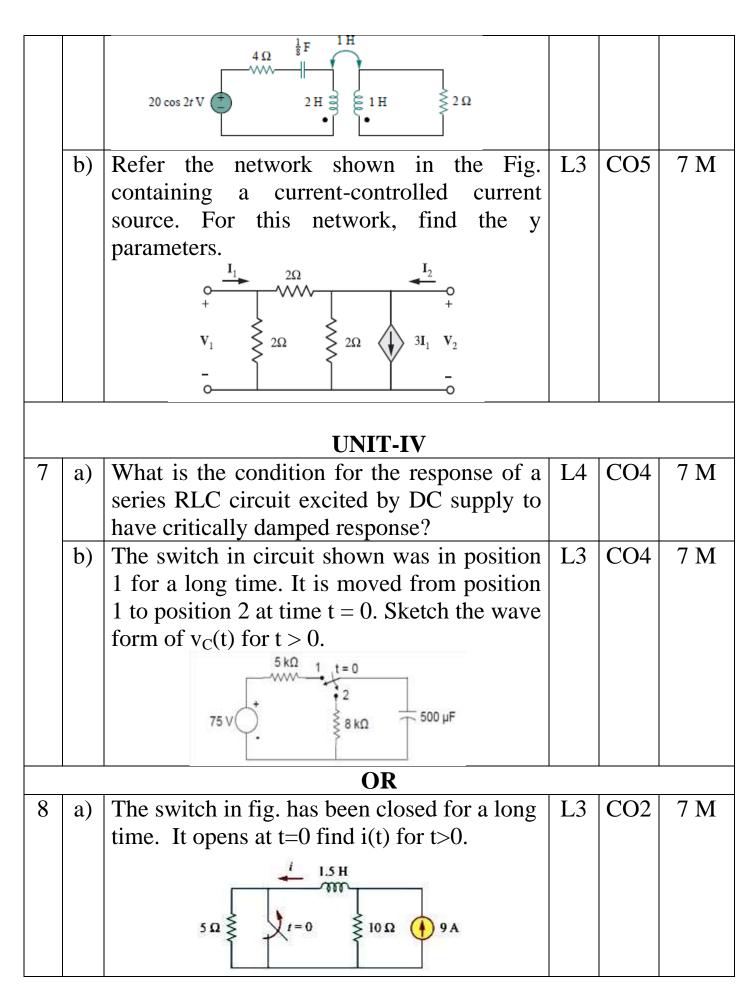
Code: 20ES1302

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

CIRCUIT THEORY (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.


2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

1				CO	Marks				
1		UNIT-I							
	a)	Explain the significance of Sinusoids in	L2	CO1	7 M				
		Circuit Analysis.							
	b)	Calculate the steady state current in a series	L3	CO2	7 M				
		RC circuit (R=10 Ω , C=100 μ F) excited by a							
		sinusoidal voltage of 100V, 50Hz AC							
		supply.							
OR									
2	a)	Explain Phasor diagram with one example	L2	CO1	7 M				
		for a complex quantity.							
		Transform these sinusoids to phasors:							
		(i) $i = 6 \cos(50t - 40^\circ) A$,							
		(ii) $v = -4 \sin(30t + 50^\circ) V$							
	b)	Derive the expression for voltage across the	L3	CO2	7 M				
		elements R, L, C and current flowing							
		through the circuit when a sinusoidal							
		voltage V=V _m Sin(ωt) is applied to a series							
		RLC and also draw phasor diagram.							

UNIT-II							
3	a)	Differentiate the series and parallel resonance.	L2	CO3	7 M		
	b)	Verify Tellegen's theorem for the following DC network.	L3	CO3	7 M		
		$\frac{2\Omega}{\Omega}$					
		$\frac{20V}{T}$ $\frac{100V}{T}$					
		OR					
4	a)	A coil of inductance 5 mH and resistance 10Ω is connected in parallel with a 250 nF	L3	CO3	7 M		
		capacitor across a 50 V variable-frequency supply. Determine (i) the resonant					
		frequency, (ii) the dynamic resistance,					
		(iii) the current at resonance, and					
	b)	(iv) the circuit Q-factor at resonance. State and explain Compensation theorem.	L3	CO3	7 M		
	0)	State and explain compensation dicorem.	L 3	003	/ 141		
UNIT-III							
5	a)	Calculate the mesh currents in the circuit of	L3	CO3	7 M		
		Fig. ${}_{4\Omega}$ ${}_{-j3\Omega}$ ${}_{j8\Omega}$					
		12 Q					
		$100 \underline{0}^{\circ} \text{ V}$ \bigcirc $\boxed{\mathbf{I}_{1}}$ $j6 \Omega$ \bigcirc $\boxed{\mathbf{I}_{2}}$					
	b)	Derive the condition for Reciprocity and	L4	CO5	7 M		
		symmetry in a two port Z - parameter					
		representation.					
OR							
6	a)	For the circuit in Fig., determine the	L2	CO3	7 M		
		coupling coefficient and the energy stored in the coupled inductors at $t = 1.5$ s.					
		Page 2 of 4					

Page 3 of 4

	b)	Derive an expression for the step response of series R-C circuit.	L4	CO4	7 M				
	UNIT-V								
9	a)	A delta connected load has a parallel combination of resistance 5Ω and capacitive reactance $-j5\Omega$ in each phase. If a balanced three phase 400V supply is applied between lines, find the phase currents and line currents and draw the phasor diagram.	L3	CO3	7 M				
	b)	The three-phase balanced load in figure, has impedance per phase of $Z_Y = 8 + j6 \Omega$. If the load is connected to 208V lines, predict the readings of the wattmeter W_1 and W_2 . Find total active power and reactive power.	L4	CO4	7 M				
		OR							
10	a)	A 415V, 3-phase a.c. motor has a power output of 12.75kW and operates at a power factor of 0.77 lagging and with an efficiency of 85 per cent. If the motor is delta-connected, determine (i) the power input, (ii) the line current and (iii) the phase current.	L3	CO3	7 M				
	b)	The two-wattmeter method produces wattmeter readings $P_1 = 1560$ W and $P_2 = 2100$ W when connected to a delta connected load. If the line voltage is 220 V, calculate: (i) the per-phase average power, (ii) the per-phase reactive power, (iii) the power factor.	L4	CO4	7 M				